SAMPLE QUESTION PAPER Class X Session 2024-25 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

General Instructions:

Read the following instructions carefully and follow them:

- 1. This question paper contains 38 questions.
- 2. This Question Paper is divided into 5 Sections A, B, C, D and E.
- **3.** In Section A, Questions no. 1-18 are multiple choice questions (MCQs) and questions no. 19 and 20 are Assertion- Reason based questions of 1 mark each.
- **4.** In Section B, Questions no. 21-25 are very short answer (VSA) type questions, carrying 02 marks each.
- **5.** In Section C, Questions no. 26-31 are short answer (SA) type questions, carrying 03 marks each.
- 6. In Section D, Questions no. 32-35 are long answer (LA) type questions, carrying 05 marks each.
- **7.** In Section E, Questions no. 36-38 are case study based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- **8.** All Questions are compulsory. However, an internal choice in 2 Question of Section B, 2 Questions of Section C and 2 Questions of Section D has been provided. An internal choice has been provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required.
- **10.** Take π =22/7 wherever required if not stated.
- **11.** Use of calculators is not allowed.

			Section A		
		Section A cons	sists of 20 questions of	f 1 mark each.	
1.	(4,-20) and (6	,0). The zeroes of	mial p(x) passes through the polynomial are C) - 30,-20	n the points (-6,0), (0, -30), D) - 6,6	1
2.	inconsistent, i	·	tem of equations 3x-ky=	7 and 6x+ 10y =3 is D) 7	1
3.	A) A number of B) Only one to C) A chord is	angent can be drav a line segment joir	ts is not true? drawn at any point on the wn at any point on a circle in the circle in the circle in the two tangents can be	le. cle	1
4.	If nth term of a	an A.P. is 7n-4 the B) 7n	n the common difference C) - 4	e of the A.P. is D) 4	1

5.			-	cone and the rac	· · · · · · · · · · · · · · · · · · ·		1
	A) 5 cm	B) 20	cm	C) 10 cm	D)	4 cm	
6.	If $\tan\theta = \frac{5}{2}$ the A) $\frac{11}{9}$	$n\frac{4\sin\theta + c}{4\sin\theta - c}$ $B)\frac{3}{2}$	$\frac{os\theta}{cos\theta}$ is equal t	to C) $\frac{9}{11}$	D) 4		1
7.	In the given fig	gure, a tange		rawn at a point F	on the circle c	entred at O.	1
	O T P	Q	•				
	If ∠ TPQ= 110 A) 110 ⁰	0 ⁰ then ∠P00) is equal to B) 70 ⁰	C) 14	₽0 ⁰	D)55 ⁰	
8.				$\int \frac{5}{2}$ and $\int \frac{5}{2}$ is C) $15x^2$ - 6		2√5 x -1	1
9.	Consider the f	requency dis	tribution of 45	observations.			1
	Class	0-10	10-20	20-30	30-40	40-50	
	Frequency	5	9	15	10	6	
	The upper lim			1	1		
	A) 20		B) 10	C) 30		D) 40	
10.	O is the point	of intersectio	n of two chord	s AB and CD of	a circle.		1
	A	c					

11.	The roots of the quadratic equation $x^2+x-1=0$ are A) Irrational and distinct B) not real	1
	C) rational and distinct D) real and equal	
12.	If $\theta = 30^{\circ}$ then the value of $3\tan\theta$ is	1
	A)1 B) $\frac{1}{\sqrt{3}}$ C) $\frac{3}{\sqrt{3}}$ (D) not defined	
13.	The volume of a solid hemisphere is $\frac{396}{7}$ cm ³ . The total surface area of the solid	1
	hemisphere (in sq.cm) is	
	A) $\frac{396}{7}$ B) $\frac{594}{7}$ C) $\frac{549}{7}$ D) $\frac{604}{7}$	
14.	In a bag containing 24 balls, 4 are blue, 11 are green and the rest are white. One ball is drawn at random. The probability that drawn ball is white in colour is	1
	$A)\frac{1}{6}$ B) $\frac{3}{8}$ C) $\frac{11}{24}$ D) $\frac{5}{8}$	
15.	The point on the x- axis nearest to the point (-4,-5) is A) $(0,0)$ B) $(-4,0)$ C) $(-5,0)$ D) $(\sqrt{41},0)$	1
16.	Which of the following gives the middle most observation of the data? A) Median B) Mean C) Range D) Mode	1
17.	A point on the x-axis divides the line segment joining the points A(2, -3) and B(5, 6) in the ratio 1:2. The point is	1
	A) $(4,0)$ B) $(\frac{7}{2},\frac{3}{2})$ C) $(3,0)$ D) $(0,3)$	
18.	A card is drawn from a well shuffled deck of playing cards. The probability of getting red face card is	1
	A) $\frac{3}{13}$ B) $\frac{1}{2}$ C) $\frac{3}{52}$ D) $\frac{3}{26}$	
	DIRECTION: In the question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option A)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) B)Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) C)Assertion (A) is true but reason (R) is false. D)Assertion (A) is false but reason (R) is true.	
19.	Assertion (A): HCF of any two consecutive even natural numbers is always 2. Reason (R): Even natural numbers are divisible by 2.	1
20.	Assertion (A): If the radius of sector of a circle is reduced to its half and angle is doubled then the perimeter of the sector remains the same.	1

	Reason (R): The length of the arc subtending angle θ at the centre of a circle of radius r	
	$= \frac{\Pi r \theta}{180}.$	
	Section B	
	Section B consists of 5 questions of 2 marks each.	
21.	(A)Find the H.C.F and L.C.M of 480 and 720 using the Prime factorisation method. OR (A) The H.C.F of 85 and 238 is expressible in the form 85m -238. Find the value of m.	2
22.	 (A) Two dice are rolled together bearing numbers 4, 6, 7, 9, 11, 12. Find the probability that the product of numbers obtained is an odd number OR (B) How many positive three digit integers have the hundredths digit 8 and unit's digit 5? Find the probability of selecting one such number out of all three digit numbers. 	2
23.	Evaluate: $\frac{2sin^2 60^o - tan^2 30^o}{sec^2 45^o}$	2
24.	Find the point(s) on the x-axis which is at a distance of $\sqrt{41}$ units from the point (8, -5).	2
25.	Show that the points A(-5,6), B(3, 0) and C(9, 8) are the vertices of an isosceles triangle.	2
	Section C	
	Section C consists of 6 questions of 3 marks each.	
26.	(A) In \triangle ABC, D, E and F are midpoints of BC,CA and AB respectively. Prove that \triangle FBD \sim \triangle DEF and \triangle DEF \sim \triangle ABC	3
	(B) In ΔABC, P and Q are points on AB and AC respectively such that PQ is parallel to BC.	

	Prove that the median AD drawn from A on BC bisects PQ.	
	P R Q C	
27.	The sum of two numbers is 18 and the sum of their reciprocals is 9/40. Find the numbers.	3
28.	If α and β are zeroes of a polynomial $6x^2$ -5x+1 then form a quadratic polynomial whose zeroes are α^2 and β^2 .	3
29.	If $\cos\theta + \sin\theta = 1$, then prove that $\cos\theta - \sin\theta = \pm 1$	3
30.	(A) The minute hand of a wall clock is 18 cm long. Find the area of the face of the clock described by the minute hand in 35 minutes. OR	3
	(B) AB is a chord of a circle centred at O such that ∠AOB=60°. If OA = 14 cm	
	then find the area of the minor segment. (take $\sqrt{3}$ =1.73)	
31.	Prove that $\sqrt{3}$ is an irrational number.	3
	Section D	
	Section D consists of 4 questions of 5 marks each	
32.	 (A) Solve the following system of linear equations graphically: x+2y = 3, 2x-3y+8 = 0 OR (B) Places A and B are 180 km apart on a highway. One car starts from A and another from B at the same time. If the car travels in the same direction at 	5

		ne spee		-			-			ther with the of the two	
33.	Prove that	the leng	ths of ta	angents d	rawn from	an ex	xternal	point	to a circle a	are equal.	5
	_	ching the	sides A	_					rcle is inscr vely and A		
	R		P	C C							
34.		-			•	und.	The an	ngle of	elevation	vith the win	d 5
		educes t	to 30°. I	f the spee					conds, the nd the heig	-	
35.	elevation r	educes to me the gr	to 30°. I	f the spee Use $\sqrt{3}$ = 1	d of the wi	ind is				-	5
 35.	elevation r	educes to me the gr	to 30°. I round. (I I mediar	f the spee Use $\sqrt{3}$ = 1	d of the wi	ind is		hen fii		-	5
35.	elevation r balloon fro Find the m	reduces from the granean and	to 30°. I round. (I I mediar	If the spee Use $\sqrt{3}$ = 1 In of the following	d of the wi	ta:	3m/s tl	hen fi	nd the heig	ht of the	5
35.	elevation reballoon from Find the modern Class	reduces from the granean and 85-90	to 30°. I round. (I I mediar	f the spee Use $\sqrt{3}$ = 1 In of the following 90-95	d of the wi 1.73) Illowing dat 95-100 20	ta:	3m/s tl	hen fii	nd the heig	110-115 25	5
35.	elevation reballoon from Find the modern Class	reduces from the granean and 85-90	to 30°. I round. (I I mediar	f the spee Use $\sqrt{3}$ = 1 In of the following 90-95	d of the wi 1.73) Illowing dat 95-100 20	ta:	3m/s tl	hen fii	105-110 20 Deciety is given-14000-	110-115 25	5
35.	elevation reballoon from the month Monthly Expendit ure	educes from the grant and 85-90 y 15 half exper 1000-	to 30°. If round. (In median	f the spee Use $\sqrt{3}$ = 1 n of the following 90-95 22 on milk in 2 2000-	d of the will (1.73) Illowing dat 95-100 20 OR 200 familie	es of a	3m/s tl	ing So	105-110 20 Deciety is given-14000-	110-115 25 en below 4500-	5
35.	elevation reballoon from the month of the mo	educes from the grant and 85-90 y 15 holy exper 1000-1500	nditure of 2000	f the spee Use $\sqrt{3}$ = 1 n of the following of the following speed	95-100 20 OR 200 familie 2500- 3000	es of a 300 350	3m/s tl	ing So 3500 4000	105-110 20 ociety is giv 0- 4000- 0 4500	110-115 25 en below 4500- 5000	5
35.	elevation reballoon from the month of the mo	educes from the grant and 85-90 y 15 holy exper 1000-1500	nditure of 2000	f the spee Use $\sqrt{3}$ = 1 n of the following of the following speed	of the will (1.73) Illowing dat 95-100 20 OR 200 familie 2500- 3000 x	es of a 300 350	3m/s tl	ing So 3500 4000	105-110 20 ociety is giv 0- 4000- 0 4500	110-115 25 en below 4500- 5000	5
35.	elevation reballoon from Find the month Class frequency The month Monthly Expendit ure (in Rs.) Number of families Find the value of	reduces from the grant and 85-90 y 15 hly exper 1000-1500 24	nditure of 2000 and als	f the spee Use $\sqrt{3}$ = 1 n of the following of the following speed on milk in 2000-2500 and 33	of the will (1.73) Illowing dat 95-100 20 OR 200 familie 2500-3000 x	es of a 300 350 and a ction	3m/s tl	ing So 3500 4000	105-110 20 ociety is giv 0- 4000- 0 4500	110-115 25 en below 4500- 5000	5

On the top layer there are 3 jars. In the next layer there are 6 jars. In the 3rd layer from the top there are 9 jars and so on till the 8th layer.

On the basis of the above situation answer the following questions.

(i) Write an A.P whose terms represent the number of jars in different layers starting from top . Also, find the common difference.

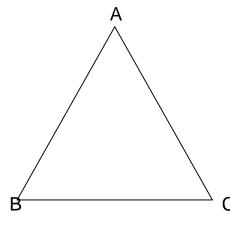
1

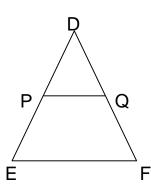
(ii) Is it possible to arrange 34 jars in a layer if this pattern is continued? Justify your answer.

1

(iii) (A) If there are 'n' number of rows in a layer then find the expression for finding the total number of jars in terms of n. Hence find S_8 .

2


OR


(iii) (B) The shopkeeper added 3 jars in each layer. How many jars are there in the 5th layer from the top?

2

37.

Triangle is a very popular shape used in interior designing. The picture given above shows a cabinet designed by a famous interior designer.

Here the largest triangle is represented by \triangle ABC and smallest one with shelf is represented by \triangle DEF. PQ is parallel to EF.

(i) Show that \triangle DPQ \sim \triangle DEF.

1

	(ii) If DP= 50 cm and PE = 70 cm then find $\frac{PQ}{EF}$.	1
	(iii) (A) If 2AB = 5DE and \triangle ABC \sim \triangle DEF then show that $\frac{perimeter\ of\ \triangle ABC}{perimeter\ of\ \triangle DEF}$ is constant. OR	2
	(iii) (B) If AM and DN are medians of triangles ABC and DEF respectively then prove that \triangle ABM \sim \triangle DEN.	2
38.	Metallic silos are used by farmers for storing grains. Farmer Girdhar has decided to build a new metallic silo to store his harvested grains. It is in the shape of a cylinder mounted by a cone. Dimensions of the conical part of a silo is as follows: Radius of base = 1.5 m Height = 2 m Dimensions of the cylindrical part of a silo is as follows: Radius = 1.5 m	
	Height = 7 m On the basis of the above information answer the following questions. (i) Calculate the slant height of the conical part of one silo.	1
	(ii) Find the curved surface area of the conical part of one silo.	1
	(iii)(A) Find the cost of metal sheet used to make the curved cylindrical part of 1 silo at the rate of ₹2000 per m^2 .	2
	(iii) (B) Find the total capacity of one silo to store grains.	2

Marking Scheme Class X Session 2024-25 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

Q.No.	Section A	Marks
1.	D) -6,6	1
2.	B) -5	1
3.	D) From a point inside a circle only two tangents can be drawn.	1
4.	A) 7	1
5.	B) 20 cm	1
6.	A) $\frac{11}{9}$	1
7.	C) 140 ^o	1
8.	B) 8x ² - 20	1
9.	C) 30	1
10.	B) isosceles and similar	1
11.	A) Irrational and distinct	1
12.	C) $\frac{3}{\sqrt{3}}$	1
13.	B) $\frac{594}{7}$	1
14.	$B)\frac{3}{8}$	1
15.	B) (-4, 0)	1
16.	A) median	1
17.	C) (3,0)	1
18.	D) $\frac{3}{26}$	1
19.	В)	1
20.	D)	1

	Section B	
21. (A)	$480 = 2^{5} \times 3 \times 5$ $720 = 2^{4} \times 3^{2} \times 5$	½ ½
	LCM $(480,720) = 2^5 \times 3^2 \times 5 = 1440$	1/2
	HCF $(480, 720) = 2^4 \times 3 \times 5 = 240$	1/2
	OR	
(B)	85 = 5x17, 238 = 2x7x17 HCF(85, 238) = 17	1
	17 = 85xm -238 m = 3	1
22.(A)	Total number of possible outcomes = 6x6=36 For a product to be odd, both the numbers should be odd. Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9) (11,11)	1/2
	no. of favourable outcomes = 9 P (product is odd) = $\frac{9}{36}$ Or $\frac{1}{4}$	1 1/2
	OR	
(B)	Total number of three-digit numbers = 900. Numbers with hundredth digit 8 & and unit's digit 5 are 805,815,	1/2
	825,,895 Number of favourable outcomes = 10	1
	P(selecting one such number) = $\frac{10}{900}$ Or $\frac{1}{90}$	1/2
23.	$\frac{2 \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^2}{\left(\sqrt{2}\right)^2}$	1 ½
	$=\frac{7}{12}$	1/2
24	Let the required point be (x,0)	1/2
	$\sqrt{(8-x)^2 + 25} = \sqrt{41}$ => $(8-x)^2 = 16$	1/2
	=> 8 - x = ±4 => x = 4 , 12	
	Two points on the x-axis are (4,0) & (12,0).	1

25.	$AB = \sqrt{(3+5)^2 + (0-6)^2} = 10$	1/2
	BC = $\sqrt{(9-3)^2 + (8-0)^2}$ = 10	1/2
	$AC = \sqrt{(9+5)^2 + (8-6)^2} = 10\sqrt{2}$	17
		1/2
	Since AB = BC, therefore \triangle ABC is isosceles	1/2
	Section C	
26.(A)	, ,	+
20.(A)		
	F E	
	3 1	
	24 5 6	
	B D C	
	Since D, E, F are the mid points of BC, CA, AB respectively Therefore, EF BC, DF AC, DE AB	1
	BDEF is a parallelogram	
	\angle 1= \angle 2 & \angle 3 = \angle 4 \triangle FBD ~ \triangle DEF	1
	Also, DCEF is a parallelogram	
	\angle 3= \angle 6 & \angle 1 = \angle 2 (proved above)	
	1 DEE . 1 ADO	1
	△ DEF ~ △ ABC	
	OR	
	A	
	$\mathbf{P} \setminus \mathbf{R} \setminus \mathbf{C}$	
	P / Q	
(B)		
	B D C	
	Since PQ//BC therefore Δ APR ~ Δ ABD	
	AP PR	
	$\Rightarrow {AB} = {BD} \dots (i)$	1

		<u> </u>
	△ AQR ~ △ ACD	
	$\Rightarrow \frac{AQ}{AC} = \frac{RQ}{DC}$ (ii)	
	AC DC	
	Now, $\frac{AP}{AB} = \frac{AQ}{AC}$ (iii)	
	$AB = AC \qquad PR \qquad RO$	
	Using (i), (ii) & (iii), $\frac{PR}{BD} = \frac{RQ}{DC}$	1
	But, $BD = DC$	
	=> PR = RQ or AD bisects PQ	
27.	Let the numbers be x and 18-x.	1/2
	$\frac{1}{x} + \frac{1}{18 - x} = \frac{9}{40}$	1
	x = 18-x = 40 => $18\times40 = 9x(18-x)$	
	$=> x^2 - 18 x + 80 = 0$	
	=> (x-10)(x-8) = 0	1
	=> x=10, 8.	
	=> $18-x = 8$, 10 Hence two numbers are 8 and 10.	1/2
28.	5 1	1
20.	From given polynomial $\alpha + \beta = \frac{5}{6}$, $\alpha\beta = \frac{1}{6}$	
	$\alpha^2 + \beta^2 = (\frac{5}{6})^2 - 2 \times \frac{1}{6} = \frac{13}{36}$	1
	6 = 16 36	
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	1/2
	And $\alpha^2 \beta^2 = (\frac{1}{6})^2 = \frac{1}{36}$	
	$x^2 - \frac{13}{36}x + \frac{1}{36}$	1/
	\Rightarrow Required polynomial is $36x^2$ -13 x +1	1/2
29.	$(\cos\theta + \sin\theta)^2 + (\cos\theta - \sin\theta)^2 = 2(\cos^2\theta + \sin^2\theta) = 2$	
	$=> (1)^2 + (\cos\theta - \sin\theta)^2 = 2$	1 ½
	$=> (\cos\theta - \sin\theta)^2 = 1$ $=> \cos\theta - \sin\theta = \pm 1$	1 1/2
	$=> \cos\theta - \sin\theta = \mathcal{L}$	/2
30.(A)	Angle described by minute hand in 5 min = 30°.	
	length of minute hand =18 cm = r. Area swept by minute hand in 35 minutes	
	$= \left(\frac{22}{7} \times 18 \times 18 \times \frac{30}{360}\right) \times 7$	2
	$= 594 \ cm^2.$	1
	OR	
(B)	Area of minor segment = Ar. Sector OAB- Ar. △ OAB	
(5)	$= \frac{90}{360} \times \frac{22}{7} \times 14 \times 14 - \frac{\sqrt{3}}{4} \times 14 \times 14$	2
	$= \frac{1}{360}$ 7 \times 14X14 $= \frac{1}{4}$ X 14X14 $= \frac{1}{4}$ = 69.23 cm ²	1

31.	Let $\sqrt{3}$ be a rational number. $\therefore \sqrt{3} = \frac{p}{q}$, where $q \neq 0$ and let p & q be co-prime. $3q^2 = p^2 \Rightarrow p^2 \text{ is divisible by } 3 \Rightarrow p \text{ is divisible by } 3 (i)$ $\Rightarrow p = 3a, \text{ where 'a' is some integer}$ $9a^2 = 3q^2 \Rightarrow q^2 = 3a^2 \Rightarrow q^2 \text{ is divisible by } 3 \Rightarrow q \text{ is divisible by } 3 (ii)$ (i) and (ii) leads to contradiction as 'p' and 'q' are co-prime.	½ 1 1 1 ½
	Section D	
32.(A)	x+2y=3, 2x-3y+8=0 Correct graph of each equation Solution x=-1 and y=2	2+2 = 4 1
	OR	
(B)	Let car I starts from A with speed x km/hr and car II Starts from B with speed y km/hr (x>y) Case I- when cars are moving in the same direction. Distance covered by car I in 9 hours = 9x. Distance covered by car II in 9 hours = 9y Therefore 9 (x-y) = 180 => x-y= 20	2
	Distance covered by Car II in 1 hour = y Therefore x + y=180(ii)	2
	Solving (i) and (ii) we get, x=100 km/hr, y=80 km/hr.	1
33.	Correct given, to prove, construction, figure	1
	Correct proof	2
	AR = AQ = 7cm $BP = BR = AB-AR = 3cm$ $CP = CQ = 5cm$ $BC = BP+PC = 3+5 = 8 cm$	1/2 1/2 1/2 1/2 1/2

34.			11	C				Correct figure 1mark
		60°	h	h				
	A X G F							
	Let A be the eye level & B, C are positions of balloon Distance covered by balloon in 12 sec = $3x12 = 36$ m BC = GF = 36 m tan $60^0 = \sqrt{3} = \frac{h}{x}$ => h = $x\sqrt{3}$ (i)							
								1
								1
	tan $30^{0} = \frac{1}{\sqrt{3}} = \frac{h}{x+36}$ => h = $\frac{x+36}{\sqrt{3}}$ (ii) Solving (i) and (ii) h= $18\sqrt{3}$ = 31.14 m Height of balloon from ground = 1.35 + 31.14 = 32.49 m							1
								1
35.								Correct
		Class	х	f	$u = \frac{x - 102.5}{5}$	fu	cf	table 2marks
		85-90	87.5	15	-3	-45	15	
		90-95	92.5	22	-2	-44	37	
		95-100	97.5	20	-1	-20	57	
		100-105	102.5	18	0	0	75	
		105-110	107.5	20	1	20	95	
		110-115	112.5	25	2	50	120	
				$\Sigma f = 120$		$\Sigma fu = -39$		
	Mean = \overline{x} = 102.5 - 5 x $\frac{39}{120}$ = 100.875 Median class is 100-105 Median = 100 + $\frac{5}{18}$ (60-57) = 100.83							
					OR			

	Monthly Expenditure	fi	Xi	$f_i x_i$		Correct
	1000-1500	24	1250	30,000	-	table 2marks
	1500-2000	40	1750	70,000	-	Zmarko
	2000-2500	33	2250	74,250	-	
	2500-3000	X=28	2750	77,000	-	
	3000-3500	30	3250	97,500		
	3500-4000	22	3750	82,500		
	4000-4500	16	4250	68,000		
	4500-5000	7	4750	33,250		
	172+x=200					1
	X=28					1
	Mean= $\frac{532500}{200}$					
	200					
	= 2662.5					1
			Section	ιE		
36.(i) First term a = 3, A.P is 3, 6, 9, 12						1/2
001(1)	, , , , , , , , , , , , , , , , , , , ,		difference d	= 6-3 = 3		1/2
(ii)						1/
	=> n = 34/3 = 1 ²					1/2
	Therefore, it is not possible to have 34 jars in a layer if the given pattern is continued.					
(iii)(A)						1/2
	$S_n = \frac{n}{2} [2x3 + (n-1)3]$ = $\frac{n}{2} [6 + 3n-3]$	3]				
	$=\frac{n}{2}$ [6 + 3n-3]		1			
	$=\frac{n^2}{2}[3+3n]$					
	$=3\frac{n}{2}[1+n]$					
	$s_8 = 3 \times \frac{8}{2} (1+8)$					1/2
						-
	= 108		OR			
			510			
(iii) (B)	A.P will be 6, 9, 12,					1/2
() (5)	a= 6, d=3					/2
	t = 6 ± (5 1)2					
	$t_5 = 6 + (5-1)3$ = 6 + 12					1
	= 18					1/
						1/2
37. (i)	∠DPQ = ∠DEF					
	∠PDQ =∠EDF					
						1
(ii)	DE = 50 + 70 = 120 cm					
						1/2
	$\frac{DP}{DE} = \frac{PQ}{EF}$					
	он п					

	Therefore $\frac{PQ}{EF} = \frac{50}{120}$ or $\frac{5}{12}$	1/2			
(iii) (A)	$\frac{AB}{DE} = \frac{5}{2} = \frac{BC}{EF} = \frac{AC}{DF}$ $\Rightarrow AB = \frac{5}{2}DE$				
	$\frac{perimeter\ of\ \triangle ABC}{perimeter\ of\ \triangle DEF} = \frac{\frac{5}{2}(DE + EF + FD)}{DE + EF + FD} = \frac{5}{2} \ (\text{Constant})$	1			
	OR				
(iii)(B)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Correct fig. ½ mark			
	$\frac{AB}{DE} = \frac{BC}{EF} = \frac{BC/2}{EF/2} = \frac{BM}{EN}$ Also $\angle B = \angle E$	1			
	Therefore \triangle ABM \sim \triangle DEN.	1/2			
38. (i)	$I = \sqrt{r^2 + h^2}$ $= \sqrt{(1.5)^2 + (2)^2}$ $= \sqrt{2.25 + 4}$	1/2			
	$= \sqrt{6.25}$ = 2.5 m	1/2			
(ii)	CSA of cone = π rl = $\frac{22}{7}$ x 1.5 x 2.5	1/2			
(iii) (A)	$= 11.78 m^2$ CSA of cylinder = 2π rb	1/2			
(, ()	CSA of cylinder = 2π rh = $2 \times \frac{22}{7} \times 1.5 \times 7$	1			
	= 66 m ² Cost of metal sheet used = 66 x 2000 = ₹1,32,000	1			
(iii) (B)	OR Volume of cylinder = πr^2 h $= \frac{22}{7} \times (1.5)^2 \times 7$				
	$=49.5 m^3$	1/2			

Volume of cone = $\frac{1}{3} \Pi r^2 h$ = $\frac{1}{3} \times \frac{22}{7} \times (1.5)^2 \times 2$ = $4.71 m^3$	1
Total capacity = $49.5 + 4.71 = 54.21 \ m^3$	1/2

